Fall 2021 Math 161 Practice Problems Solutions S=12 r by the Pythagorean Theorem A rea of square = S = 2r². X = t + 1 $\Rightarrow t = x - 1$ $y = t^{2} + t + 1$ $\Rightarrow y = (x - 1)^{2} + (x - 1) + 1 = X - X + 1$ (\mathfrak{Z}) J J J $(3) \lim_{x \to 0} \cos(x) + \sin(x) = \cos(0) + \sin(0) = 1 + 0 = 1$ $\bigcirc \lim_{x \to 0} \underbrace{e^{x} - \frac{x^{2}}{2} - x - 1}_{x^{s}} = \lim_{x \to 0} \frac{e^{x} - 2x - 1}{5x^{4}} = \lim_{x \to 0} \frac{e^{x} - 2}{20x^{3}}$ Limit Dos Not exist. Note: Problem 5 has a typo. Numerator should be cos TX +1, not cos TX -1 Recell: CSCX = Sinx] 6 SINX E f(x) E CSCX

6 SINX E A(x) E CSCX Recell: CSCX = 1] =) Lim Sin X < Lim f(x) < Lim (sc X X+JT/2 Sin X < X+JT/2 f(x) < Lim (sc X => 1 < lim for < 1, so the limit is 1 by x > 7/2 the Squeeze Theorem. (7) $-1 \leq \cos(\frac{1}{x^2}) \leq 1$ for all X, So $-x^{3} \leq X \cos(\frac{1}{x}) \leq X$ $\Rightarrow \lim_{X \to 0} \chi \cos\left(\frac{1}{X^2}\right) = O \quad \text{since } \lim_{X \to 0} \chi^3 = \lim_{X \to 0} \frac{2}{X^2 = 0}$ (a) (i) $\frac{s(3)-s(1)}{3-1} = \frac{3}{5}$ $(2i) \frac{S(1,1)-S(1)}{(1,1)} = 2.525 \text{ m/s}$ (b) S=v=2+==+ S(1)=v(1)=2.5 m/s (b) $X = \frac{1}{t^2 + 1}$ $y = t^3 + t$ $\frac{dx}{dt} = \frac{-2t}{(t^2+t)^2}; \quad \frac{dy}{dt} = 3t^2+t; \quad \frac{dy}{dx} = \frac{dy}{dt} + \frac{dy}{dt}.$

(i)
(a)
$$y = (x^{4} - 3x^{2} + 5)^{2}$$

 $y' = 3(x^{4} - 3x^{2} + 5)^{2} (4x^{2} - 6x)$
(b) $y = 4x + \frac{1}{3\sqrt{3}} = x^{42} + x^{-4/3}$
 $y' = \frac{3x^{-2}}{4x^{-4}}$
(c) $y = \frac{3x^{-2}}{4x^{-4}}$
 $y' = \frac{3 \cdot 42x + 1}{(\sqrt{3x^{4}})^{2}}$
(d) $y = \sin^{2} (\cos (\sqrt{3x^{4}}))$
 $y' = 2 \sin^{2} (\cos (\sqrt{3x^{4}})) \cos (\cos (45x^{4})) \cdot (-\sin(\sqrt{3x^{4}})))$
 $x = \frac{1}{2} (\sin \pi x)^{2} \cdot \cos \pi x \cdot \pi$
(e) $\sin (xy) = x^{2} - y$
 $\cos(xy) \cdot [1 \cdot y + xy'] = 2x - y'$
 $\Rightarrow y' = \frac{-1}{\sqrt{3}\cos(xy) + 1}$
(f) $x \tan(y) = y^{-1}$
 $1 \cdot \tan y + x \cdot \sec^{2} y \cdot y' = y'$

$$= y = \frac{y}{xxx^{2}y^{-1}} = \frac{1}{2}\ln(x^{2}-y) - \frac{1}{2}\ln(x^{2}+y)$$

$$= y' = \frac{x}{x^{2}-y} - \frac{x}{x^{2}+y} - \frac{x}{x^{2}+y}$$

$$= y' = 8\sin x \cdot \cos x$$

$$At (T_{0},1), y' = 8 \cdot \frac{1}{2} \cdot \frac{y}{2} = 243$$

$$Tanged line has equetion: y^{-1} = 243(x^{-1}y'_{0})$$

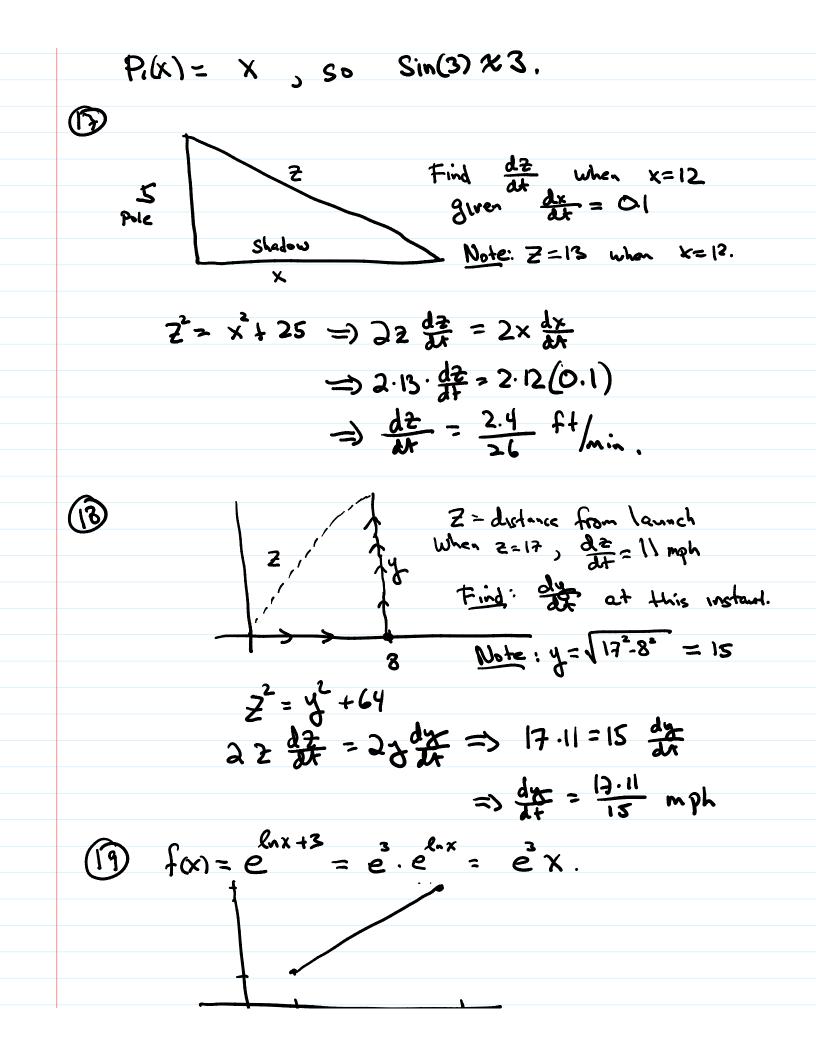
$$= y^{2}y^{2} + xy = 2$$

$$= 245x + (1 - \frac{5}{3}T),$$

$$= x^{2}y^{2} + xy = 2$$

$$= x^{2}x^{2} - \frac{1}{2}x = -\frac{1}{2}(2xy + 1) = -\frac{1}{2} + \frac{1}{2}(2xy + 1) = -\frac{1}{2}$$

=, X - X - 2 = 0 $\Rightarrow (x^2 - 2)(x^2 + 1) = 0$ コ ×= ±12 the points are (12, -12) X=12 = y=-JE (-12, 12) X=-VE => y= VE. (9) Let V(t) be the volume of gravel at the t. $V = \pm \pi r^2 h$ where r = reclivis h = height. $V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2$ since the chameter and height are equal. 当 d= 王hdh. 30 = 7.10. # 3 th = # ft/min (15) $f(x) = X e^{2x} \xrightarrow{x=1} e^{2x}$ f(x)= ex+2xe2x x=1 3e $f''(x) = 4e^{2x} + 4xe^{2x} \xrightarrow{x=1} 8e^{2}$ $P_1(x) = e + 3e(x-1); P_2(x) = e + 3e(x-1) + \frac{8e^2}{21}(x-1)$ $(f(x) = \sin x \xrightarrow{x=0})$ Use center at O, $f(x) = \cos x \xrightarrow{x=0} 1$ $P_{i}(x) = X$, so $Sin(3) \approx 3$.



No critical points || Min at X=3 with value 3e No inflection points || Max at X=10 with value 10e3. $y = x^4 + 2x^2 - 9x^2 + 6$ $y' = 4x^{2} + 6x^{2} - 8x$ q'' = 12x + 12x - 18Local Min at (-3, -48), $(\frac{3}{2}, -\frac{31}{16})$ Local Max at (0,6) Inflection Points at X= -1±17 (2) Omit this problem. $\begin{array}{c} 22\\ (a) \int_{0}^{2} x^{3} - 3x + 3 dx = \frac{x^{4}}{4} - \frac{3x^{2}}{2} + 3x \\ \end{array} \right|_{0}^{2}$ $=\left(\frac{2^{4}}{4}-\frac{3\cdot 2^{2}}{2}+6\right)-(0)$

(b) $\int_{1}^{q} \frac{2x^{2} + x^{2}\sqrt{x-1}}{x^{2}} dx = \int_{1}^{q} 2 + \sqrt{x} - \frac{1}{x^{2}} dx$ $= \left(2 \times + \frac{2}{3} \times \frac{\gamma_2}{\gamma} + \frac{1}{\gamma}\right) \left[\frac{1}{\gamma}\right]$ $= \left(18 + \frac{2}{5}9^{\frac{1}{2}} + \frac{1}{9}\right) - \left(2 + \frac{2}{5} + 1\right)$ (c) $\int \frac{-9x^2 + 10x}{\sqrt{3x^3 - 5x^2}} dx$ let $U = 3x^2 - 5x^2$ $dm = 9x^2 - 10x \, dx$ $= \int U^{-1/2} dv = 2(3x^{2} - Sx^{2})^{1/2} + C$ = $\int Sin \cup d J = Cos(e^{x}) + C$ (e) $\int_{9}^{9} \times e^{x} dx = \frac{1}{2} e^{x} \Big|_{9}^{9} = \frac{1}{2} \Big(e^{9} - 1 \Big)$ $(f) \int_{0}^{\pi/8} \sec(2\theta) + en(2\theta) d\theta = \frac{1}{2} \sec(2\theta) \Big|_{0}^{\pi/8}$ $= \frac{1}{2} \left[\sec \frac{\pi}{4} - \sec(0) \right] = \frac{1}{2} \left[\sqrt{2} - 1 \right].$ 23 (a) Sy fixed x is bigger (b) $\int_{0}^{10} f(x) dx \approx f(0) \Delta x + f(2) \Delta x + f(4) \Delta x + f(6) \Delta x + f(6) \Delta x$

(b) $\int_{0}^{10} f(x) dx \approx f(0) \Delta x + f(2) \Delta x + f(4) \Delta x + f(6) \Delta x + f(6) \Delta x$ $= [1 + -1 + 2 + 2 + 1] \cdot 2$ (C) $F(3) = \int_{1}^{3} f(x) dx \approx 0$ by estimation of areas. F(3)= f(3)= 2 ="0)= f(3)=15 by estimation of slope. $(24) \frac{d}{dx} \int_{q}^{x} e^{t}(\frac{1}{t}+2t+3) \text{ sint } dt$ $= e^{x^{2}}(x^{6}+2x^{3}+3)(\sin x^{3})\cdot 3x^{2}$ (25) f(3) = 7 $\int_{3}^{8} f(x) dx = 15$ $|S = \int_{3}^{8} f(x) dx = f(8) - F(3) \Rightarrow |S = F(8) - 7$ =) F(8)=22. (26) None of (a), (b), (c) is an antiderivative. Check by finding derivatives.